
To evaluate \( \log 54 \), we can use the properties of logarithms.
Since \(54 = 2 \times 3^3\), we can rewrite \(54\) as \(2 \times 3^3\).
Using the properties of logarithms, we can express \( \log 54 \) as:
[tex]\[ \log 54 = \log (2 \times 3^3) = \log 2 + \log 3^3 \][/tex]
Given that [tex]\( \log 2 = 0.3010 \) and \( \log 3 = 0.4771 \),[/tex] we substitute these values into the equation:
[tex]\[ \log 54 = 0.3010 + 3 \times 0.4771 \]\[ \log 54 = 0.3010 + 1.4313 \]\[ \log 54 = 1.7323 \]So, \( \log 54 \approx 1.7323 \).[/tex]