The population of a local species of flies can be found using an infinite geometric series where a1 = 940 and the common ratio is one fifth. Write the sum in sigma notation, and calculate the sum (if possible) that will be the upper limit of this population.

Relax

Respuesta :



A geometric series is the sum of the terms of a geometric sequence of  the form [tex]a, ar, ar^{2}, ar^{3},... [/tex], 
where r is the common ratio, and a≠0 is the first term.

That is, the series is  [tex]a+ar+ar^{2}+ar^{3},... [/tex]

In sigma notation, the series is written as:

∞
∑  [tex]a r^{k} [/tex] 
k=0
--------------------------------------------------------------------------------------------------

The geometric series of the form
∞
∑  [tex]a r^{k} [/tex], converges to [tex] \frac{a}{1-r} [/tex] if |r|<1
k=0

and diverges otherwise.
--------------------------------------------------------------------------------------------------

in our problem, a , the first term is equal to 940, and the common ratio is |1/5|<1, 

thus the series converges to:
[tex] \frac{a}{1-r}=\frac{940}{1-1/5}=\frac{940}{4/5}=752[/tex]


Answer: 

∞          
∑  [tex]940 (1/5)^{k} [/tex]=752   ( the upper limit of the population is 752)
k=0