How does changing the function from f(x) = βˆ’4 cos 3x to g(x) = βˆ’4 cos 3x βˆ’ 6 affect the range of the function?

The function shifts down 4 units, so the range changes from βˆ’4 to 4 in f(x) to βˆ’8 to 0 in g(x).

The function shifts down 4 units, so the range changes from βˆ’1 to 1 in f(x) to βˆ’5 to βˆ’3 in g(x).

The function shifts down 6 units, so the range changes from βˆ’4 to 4 in f(x) to βˆ’10 to βˆ’2 in g(x).

The function shifts down 6 units, so the range changes from βˆ’1 to 1 in f(x) to βˆ’7 to βˆ’5 in g(x).

Relax

Respuesta :

bcalle
The function shifts down 6 units so the range will change from (-4, 4) to (-10,-2)
Option # 3

Answer:

The function shifts down 6 units, so the range changes from βˆ’4 to 4 in f(x) to βˆ’10 to βˆ’2 in g(x).

Step-by-step explanation:

Given Β : f(x) = βˆ’4 cos 3x Β and Β g(x) = βˆ’4 cos 3x βˆ’ 6.

To find Β : Β  Β How does changing the function affect the range of the function?

Solution : We have given that Β 

Function change from Β f(x) = βˆ’4 cos 3x Β to Β  g(x) = βˆ’4 cos 3x βˆ’ 6.

By the transformation rule : f(x) β†’β†’β†’f(x) -k it mean function shifted down k unit .

Then Function would shift down 6 unit .

For Β f(x) = βˆ’4 cos 3x Β 

Range: Β [ -4,4]

For Β g(x) = βˆ’4 cos 3x βˆ’ 6.

Range : [-10 ,-2]

Therefore, The function shifts down 6 units, so the range changes from βˆ’4 to 4 in f(x) to βˆ’10 to βˆ’2 in g(x).