A cylinder and a cone have the same diameter: 8 inches. The height of the cylinder is 9 inches. The height of the cone is 18 inches.

Use π = 3.14.

What is the relationship between the volume of this cylinder and this cone? Explain your answer by determining the volume of each and comparing them. Show all your work.

Relax

Respuesta :

The cone is 2 pie r. that means that the dimaeter is 8 pie

8 pie times 18 =  144

cylinder is 9x8= 72

i think

hope this helps

and you have to subtract cone from cylinder
[tex]\bf \begin{array}{llll} \textit{volume of a cylinder}=V_{cy}=\pi r^2 h \\\\ \textit{volume of a cone}=V_{cn}=\frac{\pi r^2 h}{3} \end{array}\qquad \begin{cases} r=radius=\frac{diameter}{2}\\\ h=height \end{cases} \\\\\\  \\\\ V_{cy}=\pi r^2 h\quad \begin{cases} r=\frac{diameter}{2}=\frac{8}{2}=4 \\\\ h=9 \end{cases}\implies V_{cy}=\pi\cdot 4^2\cdot 9 \\\\\\ V_{cn}=\frac{\pi r^2 h}{3}\qquad \begin{cases} r=\frac{diameter}{2}=\frac{8}{2}=4 \\\\ h=18 \end{cases}\implies V_{cn}=\frac{\pi \cdot 4^2\cdot 18}{3} [/tex]

[tex]\bf V_{cn}=\pi \cdot 4^2\cdot 6 \\\\ -----------------------------\\\\ \textit{their relationship will be }\cfrac{V_{cy}}{V_{cn}}\implies \cfrac{\pi\cdot 4^2\cdot 9}{\pi \cdot 4^2\cdot 6} \\\\ \cfrac{9}{6}\implies \cfrac{3}{2}[/tex]