Relax

Respuesta :

c) Set x to be the number we need to find; therefore, the inequality to be solved is

[tex]\begin{gathered} 1+x>1\frac{1}{2}=1+\frac{1}{2}=\frac{3}{2} \\ \Rightarrow1+x>\frac{3}{2} \\ \Rightarrow-1+1+x>-1+\frac{3}{2} \\ \Rightarrow x>\frac{1}{2} \end{gathered}[/tex]

Therefore, any number greater than 1/2 (greater, not equal to) satisfies the inequality; particularly 1/1=1>1/2. Thus, 1/1 is a possible answer