PLEASE I NEED HELP!
Circle A is shown with a central angle marked 30 degrees and the radius marked 5 inches.

Which of the following could be used to calculate the area of the sector in the circle shown above?

Ï€(5in)30 over 360
Ï€(5in)230 over 360
Ï€(30in)25 over 360
Ï€(30in)5 over 360

Relax

Respuesta :

π(5in)² * 30 over 360 can be used to determine sector area.

[tex]\sf sector \ area \ : \dfrac{\theta}{360} *\pi *radius^2[/tex]

# radius = 5 inches

# angle = 30 degrees

sector area:

[tex]\hookrightarrow \sf \dfrac{30}{360} *\pi *5^2[/tex]

[tex]\hookrightarrow \sf \dfrac{1}{12} *\pi *25[/tex]

[tex]\hookrightarrow \sf \dfrac{25}{12}\pi[/tex]

[tex]\hookrightarrow \sf 6.54 \ inch^2[/tex]

Answer:

[tex]\pi (5\: \sf in)^2\left(\dfrac{30^{\circ}}{360^{\circ}}\right)[/tex]

π(5in)² 30 over 360

Step-by-step explanation:

[tex]\textsf{Area of a sector of a circle}=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2[/tex]

(where [tex]\theta[/tex] is the angle and r is the radius)

Given:

  • [tex]\theta[/tex] = 30°
  • r = 5 in

Substituting these values into the equation:

[tex]\begin{aligned}\implies\textsf{Area} &=\left(\dfrac{30^{\circ}}{360^{\circ}}\right) \pi \cdot (5\: \sf in)^2\\\\ & = \pi (5\: \sf in)^2\left(\dfrac{30^{\circ}}{360^{\circ}}\right)\\\\ & = \pi \cdot 25\:(\sf in^2) \cdot \dfrac{1}{12}\\\\ & = \dfrac{25}{12} \pi \:(\sf in^2) \\\\ & = 6.54\: \sf in^2\:(nearest\:hundredth) \end{aligned}[/tex]