A car filled with x kg of gasoline consumes [tex]\displaystyle \large{\frac{100+x}{100}e^{kv}}[/tex] kg/hr of gasoline when driving at v km/hr. (k is a positive constant.) Given that this car drives to a destination 100 km away at a constant speed, find the initial amount of gasoline and the driving speed such that gasoline consumption is minimized. Assume that the car stops immediately after running out of gasoline.

Relax

Respuesta :

Answer:

The vehicle should start with [tex](100\, e^{ke} - 100)\; {\rm kg}[/tex] of fuel and drive at a speed of [tex](1/k)\; {\rm km \cdot hr^{-1}}[/tex].

Step-by-step explanation:

Let [tex]t\; {\rm hr}[/tex] denote the number of hours after the vehicle started. As in the question, let the amount of fuel currently on this vehicle be [tex]x\; {\rm kg}[/tex]. The question states that the vehicle consumes fuel at a rate ([tex]dx/dt[/tex]) of [tex]((100 + x) / 100)\, e^{kv}[/tex]. In other words:

[tex]\displaystyle \frac{dx}{dt} = -\frac{100 + x}{100}\, e^{k\, v}[/tex].

Note the minus sign in front of the right-hand side. The amount of fuel on this vehicle decreases over time. Hence, the rate of change in [tex]x[/tex] should be negative.

This equation is a separable ordinary differential equation. The variables are [tex]x[/tex] and [tex]t[/tex]. Solve this ODE to find an expression of [tex]x\![/tex] (fuel in the vehicle) in terms of [tex]t\![/tex] (time.) Follow these steps:

Rearrange this equation such that all [tex]x[/tex] and [tex]dx[/tex] are are on the same side of the equation, while [tex]t[/tex] and [tex]dt[/tex] on all on the other side.

[tex]\displaystyle \frac{dx}{100 + x} = -\frac{e^{k\, v}\, dt}{100}[/tex].

Integrate both sides, and the equality should still hold. Note that [tex]k[/tex] and [tex]v[/tex] are considered as constants. Be sure to include the constant of integration [tex]C[/tex] on one side of the equation.

[tex]\displaystyle \int \frac{dx}{100 + x} = -\frac{e^{k\, v}}{100}\int dt[/tex].

[tex]\displaystyle \ln | 100 + x | = -\frac{(e^{k\, v})\, t}{100} + C[/tex].

Let [tex]x_{0}[/tex] denote the initial amount of fuel on this vehicle (i.e., the value of [tex]x[/tex] when [tex]t = 0[/tex]). The constant of integration [tex]C[/tex] should ensure that [tex]x = x_{0}[/tex] when [tex]t = 0[/tex]. Thus:

[tex]\displaystyle \ln | 100 + x_{0} | = C[/tex].

Hence, the value of the constant of integration should be [tex]\ln | 100 + x_{0} |[/tex]. Therefore:

[tex]\displaystyle \ln | 100 + x | = -\frac{(e^{k\, v})\, t}{100} + \ln | 100 + x_{0}|[/tex].

Since the speed of the vehicle is constant at [tex]v\; {\rm km\cdot hr^{-1}}[/tex], the time required to travel [tex]100\; {\rm km}[/tex] would be [tex](100 / v)\; {\rm hr}[/tex].

For optimal use of the fuel, the vehicle should have exactly [tex]x = 0[/tex] fuel when the destination is reached. Therefore, [tex]x = 0[/tex] at [tex]t = 100 / v[/tex]. Hence:

[tex]\displaystyle \ln | 100 | = -\frac{(e^{k\, v})\, (100 / v)}{100} + \ln | 100 + x_{0}|[/tex].

[tex]\displaystyle \ln | 100 | = -\frac{e^{k\, v}}{v} + \ln | 100 + x_{0}|[/tex].

Notice that [tex]\ln|100 + x_{0}|[/tex] is monotone increasing with respect to [tex]x_{0}[/tex] as long as [tex]100 + x_{0} > 0[/tex]. Thus, given that [tex]x_{0} > 0[/tex], [tex]x_{0}\![/tex] would be minimized if and only if the surrogate [tex]\ln|100 + x_{0}|\![/tex] is minimized.

While the goal is to find the [tex]v[/tex] that minimize [tex]x_{0}\![/tex], finding the [tex]v\![/tex] that minimizes [tex]\ln|100 + x_{0}|[/tex] would achieve the same purpose.

[tex]\displaystyle \ln | 100 + x_{0}| = \ln | 100 | + \frac{e^{k\, v}}{v}}[/tex].

The [tex]\texttt{RHS}[/tex] of this equation is indeed convex with respect to [tex]v[/tex] ([tex]v > 0[/tex].) Thus, the [tex]\texttt{RHS}\![/tex] could be minimized by setting the first derivative with respect to [tex]v[/tex] to [tex]0[/tex].

Differentiate the right hand side with respect to [tex]v[/tex]:

[tex]\begin{aligned} & \frac{d}{dv}\left[\frac{e^{k\, v}}{v}\right] \\ =\; & \frac{k\, e^{k\, v}}{v} - \frac{e^{k\, v}}{v^{2}}\\ =\; & \frac{(k\, v - 1)\, e^{k\, v}}{v^{2}}\end{aligned}[/tex].

Setting this first derivative to [tex]0[/tex] and solving for [tex]v[/tex] gives:

[tex]k\,v - 1 = 0[/tex].

[tex]v = (1/k)[/tex].

Therefore, the amount of fuel required for this trip is minimized when [tex]v = (1/k)\; {\rm km \cdot hr^{-1}}[/tex].

Substitute [tex]v[/tex] back and solve for [tex]x_{0}[/tex] (initial amount of fuel on the vehicle.)

[tex]\displaystyle \ln | 100 + x_{0}| = \ln | 100 | + \frac{e^{k\, (1/k)}}{(1/k)}}[/tex].

[tex]\displaystyle \ln | 100 + x_{0}| = \ln | 100 | + k\, e[/tex].

[tex]e^{\ln| 100 + x_{0}|} = e^{\ln|100| + k\, e}[/tex].

[tex]e^{\ln| 100 + x_{0}|} = e^{\ln|100|}\, e^{k\, e}[/tex].

[tex]100 + x_{0} = 100\, e^{k\, e}[/tex].

[tex]x_{0} = 100\, e^{k\, e} - 100[/tex].

In other words, the initial amount of fuel on the vehicle should be [tex](100\, e^{k\, e} - 100)\; {\rm kg}[/tex].