
(x • (y³)) - 32xyz²
Pull out like factors :
xy³ - 9xyz² = xy • (y² - 9z²)
Factoring: y² - 9z²
Theory : A difference of two perfect squares, A2 - B2 can be factored into (A+B) • (A-B)
Proof : (A+B) • (A-B) =
A² - AB + BA - B² =
A² - AB + AB - B² =
A² - B²
Note : AB = BA is the commutative property of multiplication.
Note : - AB + AB equals zero and is therefore eliminated from the expression.
Check : 9 is the square of 3
Check : y² is the square of y¹
Check : z² is the square of z¹
Factorization is : (y + 3z) • (y - 3z)
Final result :
xy • (y + 3z) • (y - 3z)