
Respuesta :
Answer:
Tortoise A: see below
Step-by-step explanation:
Let's convert Tortoise B's rate of speed to feet per hour. To do so, we can use dimensional analysis and our knowledge of conversion rates.
- [tex]\displaystyle \frac{12 \ in}{1 \ min}[/tex]
Multiply this rate by 60 minutes per 1 hour.
- [tex]\displaystyle \frac{12 \ in}{1 \ min} \times \frac{60\ min}{1\ hr}[/tex]
Multiply this rate by 1 foot per 12 inches.
- [tex]\displaystyle \frac{12 \ in}{1 \ min} \times \frac{60\ min}{1\ hr} \times \frac{1 \ ft}{12 \ in}[/tex]
By canceling out the units, we can see that ft/hr is left. This is our final answer's unit.
- [tex]\displaystyle \frac{12 \ in}{1 \ min} \times \frac{60\ min}{1\ hr} \times \frac{1 \ ft}{12 \ in} = \frac{720 \ ft} {12\ hr} = 60 \ \frac{ft}{hr}[/tex]
Tortoise B travels at a rate of 60 ft per hour, which is less than Tortoise A's speed, 71 ft per hour. Therefore, Tortoise A travels faster.