
Answer:
"0.049 W" is the correct answer.
Explanation:
According to the given question,
[tex]r = \sqrt{(3.5)^2+(2.5)^2}[/tex]
 [tex]=\sqrt{8.5}[/tex]
[tex]SL=85[/tex]
As we know,
⇒  [tex]SL=10 \ log(\frac{I}{I_o} )[/tex]
   [tex]85=10 \ log(\frac{I}{10^{-12}} )[/tex]
   [tex]I=3.162\times 1^{-4} \ W/m^2[/tex]
Now,
⇒  [tex]P_{front} = I(2\pi r^2)[/tex]
        [tex]=(3.162\times 10^{-4})(2\pi\times 18.5)[/tex]
        [tex]=0.0368 \ W[/tex]
        [tex]=0.75 \ P[/tex]
or,
        [tex]=0.049 \ W[/tex]