Quadrilateral OPQR: O(1,-5), P(3,-4), Q(7,-3), R (5,-2). Translate this quadrilateral (x,y)----> (x-5,y +7) creating image O'P'Q'R', then rotate 0'P'Q'R' 180 degrees clockwise about the origin to image O"P"Q"R". What are the final coordinate of the quadrilateral

Relax

Respuesta :

Pat100

Answer:(x,y)⇒(x-5,y+7)

0'⇒(-4,2),

P'(-2,3)

Q'(2,4)

R'(0,5)

(x,y)⇒(-x,-y)

O'((1,-5)⇒O''(-1,5)

P'(-2,3)⇒P''(2,-3)

Q'(2,4)⇒Q''(-2,-4)

R'(0,5)⇒R''(0,-5)

Step-by-step explanation: