
Respuesta :
p=amount put in
t=amount of time in years
%=growth rate
f(t)=total
f(t)=p(1+%)^t
6500=3000(1+.04)^t
Solve for t
6500/3000=(1.04)^t
*Logs*
Log (13/6) = 19.7138...
1.04
Rounded to nearest 10th
t = 19.7
t=amount of time in years
%=growth rate
f(t)=total
f(t)=p(1+%)^t
6500=3000(1+.04)^t
Solve for t
6500/3000=(1.04)^t
*Logs*
Log (13/6) = 19.7138...
1.04
Rounded to nearest 10th
t = 19.7
Answer:19.4
Step-by-step explanation:
A=P(1+\frac{r}{n})^{nt}
A=P(1+ Â
n
r
​ Â
) Â
nt
Â
A=6500 \hspace{15px} P=3000 \hspace{15px} r=0.04 \hspace{15px} t=?
A=6500P=3000r=0.04t=?
n=4\text{ (quarterly)}
n=4 (quarterly)
6500=3000(1+\frac{0.04}{4})^{4t}
6500=3000(1+ Â
4
0.04
​ Â
) Â
4t
Â
6500=3000(1.01)^{4t}
6500=3000(1.01) Â
4t
Â
\frac{6500}{3000}=\frac{3000(1.01)^{4t}}{3000}
3000
6500
​ Â
= Â
3000
3000(1.01) Â
4t
Â
​ Â
Â
2.1666667=(1.01)^{4t}
2.1666667=(1.01) Â
4t
Â
\log(2.1666667)=\log((1.01)^{4t})
log(2.1666667)=log((1.01) Â
4t
)
\log(2.1666667)=4t\log(1.01)
log(2.1666667)=4tlog(1.01)
Power Rule.
\frac{\log(2.1666667)}{4\log(1.01)}=\frac{4t\log(1.01)}{4\log(1.01)}
4log(1.01)
log(2.1666667)
​ Â
= Â
4log(1.01)
4tlog(1.01)
​ Â
Â
t=\frac{0.3357921}{0.0172855}
t= Â
0.0172855
0.3357921
​ Â
Â
t=19.42624\approx 19.4 \text{ years}
t=19.42624≈19.4 years