
Respuesta :
Answer:
The answer is "52.18 g"
Explanation:
Phosphorus mass = 12.39 Â
molar mass of [tex]P_4 = 4 \times 30.974[/tex]
               [tex]= 123.896 \ \frac{g}{mol}[/tex]
Phosphorus moles =[tex]\frac{mass}{molar \ mass}[/tex] Â
                [tex]= \frac{12.39}{123.896} \\\\ = 0.10[/tex]
mass = 40.75 g
[tex]Cl_2[/tex] Â molar mass[tex]= 2 \times 35.45 \\\\[/tex]
             [tex]= 70.9 \ \frac{g}{mol}[/tex]
[tex]Cl_2[/tex]  moles  = [tex]\frac{mass}{molar \ mass}[/tex] Â
         [tex]= \frac{40.75}{70.9} \\\\ =0.57[/tex]
The balanced equation is: [tex]P_4 + 6 Cl_2 \longrightarrow 4 PCl_3[/tex]
In the step1:
Consider reactor limiting the reaction current is less than necessary quantity as per the balanced equation is considered reactor limiting Â
The equilibrium equation:
[tex]1 \ mole \ of \ P_4 \to 6 \ moles \ Cl_2\\\\0.1 \ mole \ P_4 = ?[/tex]
Moles of [tex]Cl_2[/tex] required = 0.6 moles
But only [tex]0.57[/tex], [tex]Cl_2[/tex] moles are less than the amount needed Thus, [tex]Cl_2[/tex] is reactant restricted Â
In the step2:
Find [tex]PCl_3[/tex]Theoretical performance [tex]PCl_3[/tex] the amount formed when the reactant is fully restricted
From equilibrium Â
[tex]6 \ moles\ Cl_ 2 \to 4 \ moles \ PCl_3 \\\\0.57\ moles \ Cl_2 = ?[/tex]
[tex]PCl_3[/tex] shaped mass  = [tex]0.57 \times \frac{4}{6}[/tex]
                 [tex]= 0.38 \ moles[/tex]
[tex]PCl_3[/tex] shaped mass =[tex]moles \times molar\ mass[/tex]
Mass shaped by [tex]PCl_3[/tex] Â = [tex]0.38 \times 137.324[/tex]
                   [tex]= 52.18 \ g[/tex]