
Respuesta :
Answer:
Step-by-step explanation:
The given information shows that X and Y are two variables with  joint probability distribution as follows:
X/Y Â Â Â Â 1 Â Â Â Â 2 Â Â Â Â 3 Â Â Â Â Total
1 Â Â Â Â Â Â 0.1 Â Â 0.05 Â Â 0.1 Â Â Â 0.25 Â
2 Â Â Â Â Â 0.1 Â Â 0.3 Â Â Â 0.05 Â Â 0.45
3 Â Â Â Â Â 0.05 Â 0.1 Â Â Â 0.15 Â Â 0.3
Total   0.25  0.45   0.3    1.00
Thus, the required probability is:
[tex]P(Y = 1|X=3) = \dfrac{P(Y=1,X=3)}{P(X=3)}[/tex]
[tex]P(Y = 1|X=3) = \dfrac{0.05}{0.1}[/tex]
[tex]P(Y = 1|X=3) =0.5[/tex]
The calculated probability value of Y =1, given that X = 3 is 0.5
[tex]P(Y = 2|X=3) = \dfrac{P(Y=2,X=3)}{P(X=3)}[/tex]
[tex]P(Y = 2|X=3) = \dfrac{0.1}{0.1}[/tex]
[tex]P(Y = 2|X=3) = 1.00[/tex]
The calculated probability value of Y =2, given that X = 3 is 1.00
[tex]P(Y = 3|X=3) = \dfrac{P(Y=3,X=3)}{P(X=3)}[/tex]
[tex]P(Y = 3|X=3) = \dfrac{0.15}{0.1}[/tex]
[tex]P(Y = 3|X=3) =1.5[/tex]
The calculated probability value of Y =3, given that X = 3 is 1.50
B.
From the joint probability distribution table, we can see that the probability value of the intersection X = 3 and Y = 3 is 1.50
i.e
P(X =3, Y =3) = 1.5
However;
the marginal probability of X = 0.3
the marginal probability of Y = 0.3
P(X =3)(Y=3) = 0.3 × 0.3 = 0.09
∴
≠P(X =3)(Y=3)
Thus;
NO, the random variables X and Y are not independent.
C.
P(X+Y > 2) = P(X =2, Y = 1) + P( Y =2, X=1) + P(Y = 3, X= 1) + P( Y =2, X=2) +
          P(Y =3, X=2) + P(Y =1, X =3) + P( Y =2, X =2) +P(Y =3, X =3)
P(X+Y > 2) = Â 0.1 + 0.05 + 0.1 + 0.3 + 0.05 + 0.05 + 0.1 + 0.15
P(X+Y > 2) = 0.9
P(XY =3) Â = Â Â P(X =2, Y =1 ) + P( Y =1 , X = 2)
P(XY =3) Â = 0.10 + 0.05
P(XY =3) Â = 0.15
P(XY > 1) = 0.1 + 0.05 + 0.1 + 0.1 + 0.3 + 0.05 + 0.05 + 0.1 + 0.15
P(XY > 1) = 1.00