
Answer:
(C)β3 β€ x β€ 1
Step-by-step explanation:
The average rate of change of function h over the interval [tex]a \leq x\leq b[/tex], is given by this expression:
[tex]\dfrac{h(b)-h(a)}{b-a}[/tex]
Given the function [tex]h(x)=x^2-1[/tex] on the interval:β 3 β€ x β€ 1
[tex]h(1)=1^2-1=0\\h(-3)=(-3)^2-1=9-1=8[/tex]
The average rate of change:
[tex]\dfrac{h(b)-h(a)}{b-a}=\dfrac{0-8}{1-(-3)}=\dfrac{-8}{4}=-2[/tex]
Therefore, the function has a negative average rate of change over the interval β 3 β€ x β€ 1.
CHECK:
(A)Average rate of change of h(x) over the interval β 3 β€ x β€ 5=2
(B)Average rate of change of h(x) over the interval 1 β€ x β€ 4=5
(D)Average rate of change of h(x) over the interval β 1 β€ x β€ 5=4