
Answer:
1584.9 m/s
Explanation:
Escape velocity on planet X is given as:
v = √(2*G*M/R)
Where G = gravitational constant
M = mass of planet X
R = radius of planet X
=> 1919 = √(2 * 6.67 * 10^(-11) * M/R)
1919² = (2 * 6.67 * 10^(-11)) * M/R
=> M/R = 3682561/(2 * 6.67 * 10^(-11))
M/R = 2.76 * 10^16 kg/m
Given that
Mass of planet X, M = 1.37 * mass of planet Y, m
m = M/1.37 = 0.73M
Radius of planet X, R = 0.935 * radius of planet Y, r
=> r = R/0.935 = 1.07R
Hence, the escape velocity on planet Y is:
v = √(2 * 6.67 * 10^(-11) * m/r)
Inputting the values of m and r in terms of M and R:
v = √(2 * 6.67 * 10^(-11) * 0.73M/1.07R)
Given that M/R = 2.76 * 10^16:
v = √(2 * 6.67 * 10^(-11) * 0.73 * 2.76 * 10^16 / 1.07)
v = √(25.12 * 10^5)
v = 1584.9 m/s