A ball is thrown vertically upward from the ground with an initial velocity of 109 ft/sec. Use the quadratic function
h(t) = -16t2 + 109t to find how long it will take for the ball to reach its maximum height, and then find the maximum
height. Round your answers to the nearest tenth.

Relax

Respuesta :

Answer:

Time taken by the ball to reach its maximum height is 3.4 sec

maximum height reached by the ball is 185.6ft

Step-by-step explanation:

h(t) = -16[tex]t^{2}[/tex] + 109t

height is maximum ⇔ [tex]\frac{d}{dt}[/tex](h) = 0 and [tex]\frac{d^{2} }{dt^{2} }[/tex](h) < 0

[tex]\frac{d}{dt}[/tex](h) = 0 ⇒ -32t + 109 = 0

⇒t = [tex]\frac{109}{32}[/tex] ⇒ t = 3.4sec

[tex]\frac{d^{2} }{dt^{2} }[/tex](h) = -32 < 0

∴h(t) is maximum at t = 3.4

and maximum height is h(3.4) = -16×[tex]3.4^{2}[/tex] + 109×3.4 ⇒ h = 185.6ft

Answer:

The maximum height with rounding by the nearest tenth is [tex]280.56\ m[/tex]

Explanation:

Initial velocity of ball [tex]=109\ ft/sec[/tex]

Quadratic function [tex]$h(t)=-16t x^{2} +109t$[/tex]

Maximum  height[tex]=?[/tex]

Step 1:

This ball has its height related to time by a parabola with the equation:

[tex]$s=\frac{1}{2} \times a \times t^{2}+v_{0} \times t+s_{0}$[/tex]

where [tex]$s$[/tex] is the height so is the starting height, [tex]v_{0}[/tex]  is its starting velocity [tex]$=109 \ {ft} / \mathrm{s}$[/tex]

[tex]$a$[/tex] is the acceleration of gravity, which is [tex]$-16 \ {ft} / \mathrm{s}$[/tex] every second.

Step 2:

Time required to reach its maximum height:

[tex]$v=a^{*} t+v_{0}[/tex]  (its velocity is the acceleration of gravity × time [tex]+ v_0[/tex]) [tex]$v$[/tex] will slow down from [tex]$109 \ {ft} / \ s[/tex] to [tex]$0 \mathrm{ft} / \mathrm{s}$[/tex]  

And it slowing down at [tex]$16 \mathrm{ft} / \mathrm{s}$[/tex] :

[tex]t(s)=0,1,2,3,4,5,6[/tex]

[tex]V (m/s)=109,93,77,61,45,29,13[/tex]

Before [tex]$7 \mathrm{~s}$[/tex], it will hit the ground.

Exact calculation [tex]$t=\frac{109 f t / s}{16 f t / s}=6.81 s$[/tex]

Thus we can say at the height of,

[tex]$\mathrm{t}_{\max }=\frac{6.81}{2} \\=3.4\ sec[/tex]  

Step 3:

Plug the [tex]t_m_a_x[/tex] sec value back into equation:

[tex]$h(t)=t \cdot(-16 t+109)$[/tex]

[tex]$h_{\max }=3.4 \cdot(-16.4 .1875+109)$[/tex]

[tex]$h_{\max }= 185.6\ m[/tex]

Hence, the maximum height is [tex]185\ m[/tex]

To learn more about vertically upward ball, refer:

  • https://brainly.com/question/17925478
  • https://brainly.com/question/14614888