
Answer:
- 0.2 cm/s
Step-by-step explanation:
Volume of a cylinder =  πr²l--------------------------------------------------------(1)
dV/dt =(dV /dr ) x (dr/dt) + Â (dV /dl ) x (dl/dt) ---------------------------------(2)
dV/dr = 2 πrl
dV/dl  =  πr²
dr/dt  = Unknown
dl/dt  = 0.1 cm/s
dV/dt = 0
From equation (1), the length of the cylinder can be calculated when r = 5cm
V = πr²L
100 = π (5)²L
L =100/25Ï€
 =4/π
To find the rate of radius change  (dr/dt) we substitute known values into equation (2):
0 = 2 π (5) (4/π) x  (dr/dt) + π(5)² x 0.1
0 = Â 40 (dr/dt) Â + 2.5Ï€
40 (dr/dt) = -2.5Ï€
   dr/dt =  -2.5π/40
       =  -0.1963 cm/s
       ≈ - 0.2 cm/s
The negative sign shows that the radius of the cylinder of constant volume decrease at a rate twice the length.