The top and bottom margins of a poster 6 cm each, and the side margins are 4 cm each. If the area of the printed material on the poster is fixed at 384 square centimeters, find the dimensions of the poster of smallest area. (list the smallest dimension first)

Relax

Respuesta :

Answer:

p = 25,20 cm

h = 34,32 cm

A(min) = 864,86 cm²

Step-by-step explanation:

Let call p and h dimensions of a poster, ( length , and height respectively) and x and y  dimensions of the printed area of the poster then

p = x + 8        and      h = y + 12

Printed area = A(p) = 384 cm²     and   A(p) = x*y     ⇒ y = A(p)/x

y = 384 / x

Poster area  =  A(t) = ( x + 8 ) * ( y + 12 ) ⇒ A(t) =  ( x + 8 ) * [( 384/x ) + 12 ]

A(t)  =  384 + 12x + 3072/x + 96      A(t) = 480 + 3072/x + 12x

A(t)  =  [480x + 12x² + 3072 ] / x

A´(t) =  [(480 + 24x )* x  - (480x + 12x² + 3072]/x²

A´(t) =  0         [(480 + 24x )* x  - 480x - 12x² - 3072] =0

480x + 24x² -480x -12x² - 3072 = 0

12x² = 3072         x² = 296

x = 17,20 cm       and      y =  384/17,20      y = 22,32 cm

Notice  if you substitu the value of x = 17,20 in A(t) ; A(t) >0 so we have a minimun at that point

Then dimensions of the poster

p = 17,20 + 8  = 25,20 cm

h = 22.32 + 12 =34,32 cm

A(min) = 25,20 *34.32  

A(min) = 864,86 cm²