For a brass alloy, the stress at which plastic deformation begins is 345 MPa (50,000 psi), and the modulus of elasticity is 103 GPa (15.0 ×106 psi). (a) What is the maximum load that may be applied to a specimen with a cross-sectional area of 130 mm2 (0.2 in2 ) without plastic deformation? (b) If the original specimen length is 76 mm (3.0 in.), what is the maximum length to which it can be stretched without causing plastic deformation?

Relax

Respuesta :

Answer:

a) P = 44850 N

b) [tex]\delta l =0.254\ mm[/tex]

Explanation:

Given:

Cross-section area of the specimen, A = 130 mm² = 0.00013 m²

stress, σ = 345 MPa = 345 × 10⁶ Pa

Modulus of elasticity, E = 103 GPa = 103 × 10⁹ Pa

Initial length, L = 76 mm = 0.076 m

a) The stress is given as:

[tex]\sigma=\frac{\textup{Load}}{\textup{Area}}[/tex]

on substituting the values, we get

[tex]345\times10^6=\frac{\textup{Load}}{0.00013}[/tex]

or

Load, P = 44850 N

Hence the maximum load that can be applied is 44850 N = 44.85 KN

b)The deformation ([tex]\delta l[/tex]) due to an axial load is given as:

[tex]\delta l =\frac{PL}{AE}[/tex]

on substituting the values, we get

[tex]\delta l =\frac{44850\times0.076}{0.00013\times103\times 10^9}[/tex]

or

[tex]\delta l =0.254\ mm[/tex]