Given a cone with a volume of 56.52 in^3 and height 7 in., find the base radius of the cone.Use 3.14 for pi. Round your answer to the tenths place. a. 2.1 in c. 4.9 in b. 2.8 in d. 4.3 in

Relax

Respuesta :

Answer:

B

Step-by-step explanation:

Volume of Cone formula is given by :  [tex]V=\frac{1}{3}\pi r^2 h[/tex]

Given V = 56.52 and h = 7, we plug them in and solve for r:

[tex]V=\frac{1}{3}\pi r^2 h\\56.52=\frac{1}{3}(3.14) r^2 (7)\\56.52=7.33r^2\\\frac{56.52}{7.33}=r^2\\7.71=r^2\\r=\sqrt{7.71}\\ r=2.77[/tex]

rounding to tenths place, r = 2.8 inches

Answer choice B is right

Answer: c.   [tex]4.9\ in.[/tex]

Step-by-step explanation:

The volume of cone is given by :-

[tex]V=\dfrac{1}{3}\pi r^2 h[/tex], where r is radius and h is height of the cone.

Given: Height : 7 in.

Volume : [tex]56.52\ in^3[/tex]

Then the volume of the cone will be :-

[tex]56.52=\dfrac{1}{3}(3.14) r^2(7)\\\\\Rightarrow\ r^2=\dfrac{56.52\times3}{7\cdot3.14}\\\\\Rightarrow\ r^2=24.22285714\\\\\Rightarrow\ r=4.921672189\approx4.9\ in.[/tex]

Hence, the radius of the cone =  [tex]4.9\ in.[/tex]